
An adaptive package architecture for

corporate GIS

Andrés Pazos, José Poveda, Michael Gould
Department of Information Systems (LSI), Universitat Jaume I

E-12071 Castellón, Spain
apazos@iac.es

{albalade, gould}@uji.es

SUMMARY
 We introduce a flexible software architecture that overcomes some of the common problems found in

corporate GIS environments, especially in the public sector. This three-tier architecture defines a set

of software packages that are composed at the server side in response to the needs of each user. The

kernel and n external packages are downloaded and configured at run-time, with a middleware layer

handling authentication and versioning. To demonstrate the proposed architecture, we present a

practical development use case that facilitates the composition of separate free software packages in

the GIS domain.

KEYWORDS: Distributed corporate GIS, network-based GIS architecture, component-based
system

INTRODUCTION
 Corporate GIS are multi-participant, multi-user computing environments, and while they are not

necessarily complex (often just a single server and simple client applications) they do tend to be

difficult to support due to the large number of users, working in multiple, geographically dispersed

offices. This complicates practical tasks such as data sharing among departments, system

installations, upgrades and routine maintenance. Each of potentially thousands of users may have

specific requirements based on their capacity to use the GIS, and requirements regarding hardware

and software configurations: one size does not fit all. Status quo has been that system administrators

are forced to install custom upgrades and extensions one workstation at a time, either that or offer all

users the same monolithic package to be downloaded remotely. Until recently GIS software was

largely monolithic (see figure 1); even though experience shows that many users exercise only a

fraction of the functionality offered by a full-featured GIS, system administrators were required to

install and support a full, often costly, commercial license for each and every user. The leading GIS

vendors offer so-called extensions to a base GIS product, but what happens when that base already

offers excessive, or just not the right mix of, functionality for a particular user? In search of just the

right set of functions for each user, two primary options have become available: 1) end user

development (EUD) which assumes the user has software development skills (Morch, 2004) to be

able to build an application from JavaBeans or ActiveX components, or 2) server-side configuration

of software modules, here termed packages after the terminology common in the Java, Perl and

Python communities. We opt for this second option, which for the reader familiar with ESRI

terminology (and purely for comparison) would fall somewhere between a monolithic ArcView and

the manual programming of smaller ArcObjects.

 In organizations with an elevated number of users, and especially in the public sector which is

extremely cost-conscious, an extensible and easily-customizable GIS application solution is needed.

This is possible following two levels of application flexibility: at the organizational level the system

presents scalability that allows reuse of existing software, adapted to evolving needs; at the user level,

he or she should determine the customization needed, periodically installing or updating only the

parts of the application needed to perform his or her work (Morch, 1997).

© 2003, Open GIS Consortium, Inc. 12

Helping the World to Communicate Geographically

Migration from traditional GISMigration from traditional GIS

Yesterday Future

Application

Monolithic

GIS

Proprietary

or Generic

DBMS

Connection

Application

Spatial DB

Middleware

Traditional

DBMS

Open

APIs

Proprietary

APIs

Universal

Server(s)

(spatially-

aware)

Application

Application Services

Figure 1. The migration from monolithic to service-based GIS architectures, according to OGC. Note

that OGC defines interfaces (here termed Open APIs) yet does not define how to implement them.

© 1998, Open GIS Consortium, Inc. All Rights Reserved 19

Helping the World to Communicate Geographically

New functionalityNew functionality

vendor A
vendor B

vendor C vendor D

Figure 2. The OGC vision of interchangeable COTS components; OGC does not define how this

process should be implemented.

 The component-based software development (CBSD) paradigm (Brown, 2000) is helping to make

this extensibility and flexibility a reality. In the CBSD approach new code development is minimized

and system upgrades become the task of replacement of well-bounded functional units of the system.

This replacement concept is not unlike that suggested by OGC (see figure 2) however we remind the

reader that OGC defines only interface specifications, not architectures or implementation

alternatives, which is what we describe here. In our proposed architecture the components are

grouped in packages, defined as a functional, replaceable set of services. This allows acquisition of

packages developed from third-party developers (COTS or free software) and adapting them to the

CBSD process. These applications may be composed of a light kernel, which implements the basic

functionality, and a set of independent packages each offering extended functionality. Each package

implements a specific part of the GIS and is connected to the kernel through published interfaces (not

necessarily OGC) in order to compose the final application desired by the user. Note that the

composition or integration does not happen automatically; the system administrator still must build

wrappers or connectors, however this is done for each new package to be included for potential use by

all users, not something that is programmed by or for each user. Programming is centralized and

application configuration decentralized.

 Thanks to the ubiquitous Internet infrastructure it is now routine to download and install custom

software rather than relying on CDs or other hard media for full installations. However, conventional

client/server architectures do not cope well with access control and distribution requirements, forcing

us to move to a 3-tier software architecture. A central server stores and dispatches the different pieces

(packages) that may be combined to form custom final applications, while the middleware provides a

natural layer where to locate the adaptive, context dependent behavior (McKinley, 2004). The client

interface is through a specific HTTP browser that connects to the middleware services. The system

administrator takes charge of controlling the server, making the necessary changes in order to adapt

the packages to the CBSD process. The system administrator may also monitor download and ‘real’

system usage among the various users, and make adjustments, load balancing for example,

accordingly.

 The case study that motivated this work is taken from our experience with public administration,

specifically the Infrastructure and Transport Department of a regional government authority. This

organization supports more than four hundred computer users, many of whom utilize GIS only on a

sporadic basis. They commonly use proprietary desktop applications with high annual license

payments. According to internal surveys, many of these users require only a specific subset of

complete GIS functionality. Moreover, the users are distributed geographically, so it is important to

centralize remote software installation and maintenance in order to save time and money. Finally,

these users generally prefer to have the GIS application loaded locally, rather than depend upon full-

time web services access.

 The architecture proposed here is valid for commercial as well as free software, but additional

monetary benefit naturally accrues from the configuration and composition of GIS clients based on

free software components (Anderson, 2003), all other factors being equal. Today more than ever it is

possible to reuse existing software libraries that cover the basic functionality of a GIS application, and

in many cases source code is available so that these libraries can be modified or extended by system

administrators in-house. Examples of these libraries are Geotools (www.geotools.org) and Terralib

(Camara, 2000), which are distributed under the Lesser General Public License (LGPL), meaning

they are valid both for open source developments and also for commercial purposes.

 In the following sections we describe in greater detail the proposed package-based architecture,

followed by a pilot application implemented using Java WebStart (Schmidt, 2001) and integrating

free software components as the package extensions to a central kernel.

ARCHITECTURE OVERVIEW
 In this section we present a relatively simple solution that fulfils many, not all, corporate GIS needs.

We modify the traditional concept of monolithic GIS application, and we redistribute it as smaller,

interchangeable chunks to create a better fit to changing corporative environments, which among

other things are connected via high-speed networks. The architecture proposed would not have been

viable in most organizations a decade ago, as shown in previous studies (Anitto, 1994), due to the

communication capabilities that are needed. The architecture has been defined to offer two key

features: 1) inexpensive system maintenance and 2) scalability of the system in a natural, incremental

manner, avoiding costly reengineering processes.

 In order to achieve the desired flexibility, the system is divided into a kernel and a set of external

packages. The kernel is considerably smaller, by a factor of 10, than the typical base GIS. Our

packages (of the type used in the Perl, Python and Java programming communities) are larger

functional aggregations than are GIS components such as MapObjects (Hartman, 1997). The kernel

implements the main thread of the system, the basic user interface, and is in charge of assembling the

GIS application at the client side. In the assembly process, the user selects and requests packages that

are loaded and joined in order to build the final application. Each package implements a specific

functionality and is connected to the kernel thanks to the adoption of well-defined interfaces (again,

not necessarily OGC).

 Software maintenance for a changing system is an important factor that we must take into

consideration at the system design level. In this way and according to (Isnard, 2004), the

administration of the maintenance in a specific environment simplifies this task. Here we assume that

the system administrator handles the update and preparation of each package, its interfaces and

necessary wrappers, so that end users do not need to program.

Corporate needs in GIS applications
 After reviewing existing solutions for Corporate Geographic Information Systems (CGIS), we have

pointed out some limitations overcome by the proposed architecture.

• Customization: Thanks to EUD principles, the user must be able to select and install only

the specific packages needed to perform his/her particular work and not necessarily the full

CGIS functionality.

• Extensibility: The system must be scalable according to evolving needs of the organization,

allowing re-use of part or all of the existing system.

• Software distribution: Organizations operate in a decentralized fashion, and do business in

many geographical regions, so they require distributed computer support. The software

must be downloaded and installed across a network, to perform specific local installations.

• Maintenance: A centralized architecture helps in the administration of the system, because

it allows updates to each independent piece (package) and interfaces with minimal cost.

General Structure
 Traditionally GIS architecture follows a client-server schema (still rather monolithic, or bilithic),

where the data processing takes place on the server side and the results are sent to clients for

visualization. The question remains where to locate in a client-server schema, packages oriented to e-

government or e-business with typical functionalities such as user validation and authentication. At

the server side the system loses flexibility and introduces a performance bottleneck at execution time.

On the client side the system overloads communication between server and clients due to redundant

functionality sent to the multiple clients. Taking into consideration these aspects, the schema that has

been adopted corresponds with a three-tier software architecture (see figure 3) by adding a middle

new tier located between the client and server.

Figure 3: Architecture proposed for selecting and loading packages.

 The package architecture exploits the main benefits of the web as a transfer protocol (ubiquity,

portability, reliability and trust) for delivery of the different pieces that will conform each GIS

application. The client layer is responsible for interaction with the user and for generation of queries

sent to the middleware housing the user profile validation and authentication services. These

requirements, in practical terms, are achieved with a web-based system architecture where the client

is a standard web browser and the middleware is implemented as a web server, normally Intranet. The

server layer, as software repository, contains the packages that will be sent to the client after

processing the middle tier messages. The interchange of messages between the different layers is

implemented with XML files (Aloisio, 1999).

 In order to compose the final GIS application the main steps to be followed are:

1. Connection to the middleware layer through the client browser, the first time the user

composes the GIS application and each time the GIS application configuration is updated.

2. Validation and authentication with user name and password. According to the user profile

and package visibility privileges, the middleware shows a list of the possible packages (read

here functionalities) that can be added to the GIS application kernal.

3. Selection of packages (functionalities) that the user wishes to install.

Selected
Packages

Kernel

Package N

Package 1

REPOSITORY

XML Interpreter

 xml

DATABASE

Selection Update

Validation

CLIENT/BROWSER

M
ID
D
L
E
W
A
R
E

S
E
R
V
E
R

4. XML configuration. After receiving the result of the selection, the middleware dynamically

creates a XML file that contains the user profile and package configuration information.

This configuration file is sent to the server.

5. Server-side processing. The server processes the XML configuration file and sends the

selected packages to the client. These packages are automatically launched to the client and

the final GIS application is composed and initiated.

TESTING PROTOTYPE
 In order to demonstrate the proposed architecture, we have implemented a testing prototype that

follows the previous ideas. Although the architecture is not specific to any specific programming

environment, in order to define a system as universal as possible, we have selected Java (Gosling,

1996). One of the more important features of the software products developed in Java is platform

independence. Applying the concepts presented earlier to the public administration domain, the CGIS

desired should be accessible to all the users without distinction to either hardware or operating system

platform, again, to ease the load on system administrators who must support hundreds of users. As

interoperability is a key factor for the proposed architecture this development language fits well with

our needs. It is also no accident that many of the GIS-related software packages we have encountered

are Java applications.

 On the other hand software development should be based on well-known standard technologies, and

this is where certainly adoption of OpenGIS/ISO interfaces helps considerably. Data formats should

also be standardized so as to minimize reformatting needs between software packages, and also to

facilitate the search and retrieval of data exploiting future Spatial Data Infrastructures (SDI). In this

sense one of the packages currently being implemented for the testing prototype, accomplishes one of

these functions with the inclusion in the CGIS prototype of a Web Map Service client (WMS OGC).

The GIS application should be interoperable with other servers and facilitate data sharing among

different governmental agencies. Fortunately many of the software packages encountered in the GIS

free software community support a small set of well-known data formats.

 According to the structure shown in figure 3, the final CGIS prototype is divided in three main tiers:

Client
 The client tier is represented by a standard web-browser and allows the user to send different

requests to the middleware through the network. This is a key element of the CGIS in order to define

the architecture in an interoperable web-based context framework. Before accessing the

functionalities offered by the CGIS, the user must be validated through the client interface, and so

general security issues are included in order to support this authentication.

Middleware
 The implementation of this intermediate tier has been carried out using Java Servlet technology.

User access to the functionality provided by this tier is handled through the use of a standard web

browser. The typical functions of this layer are the validation and authentication of the users as well

as the selection of the packages to be installed at the client side. The users of the CGIS are registered

in a PostgreSQL database located at the central server. In the authentication process this database is

checked in order to identify the user. Depending on user and package privileges, the system displays

to the client a list of available packages and their properties. In the case of users with administration

privileges, the capability for uploading and/or updating packages to the system is also activated.

 Besides name and privileges, each package carries some related metadata. These correspond to the

author name, a brief description of the package functionalities, the date of creation, the version, size,

etc. All these data provide information about the packages shown to the user at the selection process.

In order to distribute the packages in an optimal way, they are compressed in jar files.

 After the user has selected a set of packages to be installed, the middleware creates dynamically an

XML configuration file, containing information about the packages to be sent to the user. The

communication protocol selected for the testing prototype is JNLP.

Server
 The server receives and processes the XML configuration file sent by the middleware, and afterward

sends the selected packages to the client. In order to perform these actions the JNLP communication

protocol also has been used. This protocol channels Internet with the user system using low-level

TCP/IP protocols, and sends the jar files across the web. The JNLP operations are performed by Java

Web Start platform that must be installed (once) at the end user’s client machine.

 The JNLP protocol is implemented with the Java programming language platform and provides

rather stable security mechanisms such as a signature associated with each package. It is the decision

of the client to accept or not the download of a package depending of the validity of the signature.

This feature is not important for restricted networks such as intranets, but can be crucial for the use of

the CGIS in open network as it is the case of Internet.

GIS-Application
 The GIS client application (client instantiation of the CGIS) is composed of several packages; the

kernel and other additional packages that enrich the functionality of the basic GIS framework (a basic

graphic user interface shown by the kernel). In principle, the kernel implements a basic graphic

environment and is also in charge of the loading process of the external packages. It is divided in the

following parts: main view, data view, menu bar and tool bar.

Figure 4: GIS-application composed for the analysis of vector data

 Each of these parts is implemented independently as a class. These classes show a public interface

that allows access to the objects or the implementation of internal operations. Following these

interfaces, the packages are able to gain access to the kernel of the system. This connection is possible

thanks to the XML connection files, which match a defined schema (DTD).

 Figure 4 shows a selected configuration of the GIS-application. We observe that different packages

of vector data visualization and basic functionality have been loaded. Specifically, we are visualizing

a map of the Mexican states and its corresponding data table. The operation shows the search of a

city, specifically Mexico D.F. The result is highlighted in the data table and in the main view.

CONCLUSIONS
 In this paper, we examine some of the limitations of GIS applications used in corporative

environments, which in many cases either too monolithic and general or too atomic and programming

based. We concentrated on some crucial issues of integrating component-based software development

and three-tier dissemination structures. These ideas are the result of previous investigation into the

uses of GIS software in the public administration and the possibilities of open source software

integration in this field. We have attempted to find the appropriate design for corporate environments

in an effort to minimize maintenance costs, while at the same time promote the interoperability and

flexibility of the resulting software framework.

 We proposed an adaptive, package-based architecture that allows the optimum distribution and

installation of the GIS application, package by package, where each user is able to customize his/her

application interactively. The software architecture has been validated through the implementation of

a testing prototype. This development has been a key aspect in order to improve and demonstrate the

design features. The architecture is universal, not strictly related to any protocol, programming

language or platform, though some characteristics of the selected implementation language, for

instance being a multiplatform language, make the system even more universal. In particular, in the

validation implementation Java WebStart was utilized with success.

 Finally, the described architecture opens a framework for the development of GIS. With the

inclusion of independent packages in a central server, different needs of the corporate environment

can be supported. As future work we propose the implementation of new packages that extend the

existing testing prototype. It is important to make an effort to incorporate open source libraries such

as GeoTools 2 and Terralib that allow the creation of new packages with minimal effort; on the other

hand the system can be extended in the middleware layer. We propose to add functionality for

monitoring, and controlling downloads of the different users in order to produce useful statistics for

administration purposes.

Acknowledgements

 The work described here is sponsored in part by Spain Ministry of Science and Technology grant

TIC-2003-09365-C02, and by the Generalitat Valenciana (CIT).

BIBLIOGRAPHY
Aloisio G., Millilo G., Williams R.D, 1999: An XML architecture for high performance web-based

analysis of remote-sensing archives. Future Generation Computer Systems, vol. 16, pp. 91-

100.

Anderson G., Moreno-Sanchez R., 2003: Building Web-Based Spatial Information Solutions around

Open Specifications and Open Source Software. Transactions in GIS, Vol. 7, 447.

Anitto R. N., Patterson B. L., 1994: A new Paradigm for GIS data communications. URISA Journal,

Milwaukee, pp. 64-67.

Brown A. W., 2000: Large-Scale, Component-Based Development. Prentice Hall PTR.

Camara G., et al.: Terralib: Technology in Support of GIS Innovation. II Workshop Brasileiro de

Geoinformática, Geoinfo2000. Sao Paulo (2000) http://www.dpi.inpe.br/nsf-cnpq/terralib.pdf

Gosling J., McGilton H., 1996: White Paper: The Java Language Environment. Java Articles.

http://java.sun.com

Hartman R., 1997. Focus on GIS component software. Onward Press, Santa Fe, New Mexico.

Isnard E., Perez E., and Galatescu A., 2004: MECASP – An Environment for Software Maintenance

and Adaptation. ERCIM News, No.58, pp. 45-46.

McKinley P., Masoud S., Kasten E., Cheng B., 2004: Composing Adaptive Software. Computer IEEE

Computer Society, vol 37 (7), pp. 56- 64.

Morch A., 1997: Three Levels of End-User Tailoring: Customization, Integration, and Extension. In:

M. Kyng & L. Mathiassen (eds.): Computers and Design in Context. The MIT Press,

Cambridge, MA pp. 51-76

Morch A., Stevens G., Won M., et al., 2004: Component-based technologies for end-user

development. Communications of the ACM, Vol 47 (9), pp. 59-62.

Schmidt R.: Java Networking Launching Protocol & API Specification, 2001. Java Articles

http://java.sun.com

