
Shareable descriptions of geographical

data production processes

Bénédicte Bucher
1
, Sandrine Balley

1
, Didier Richard

2
, Gilles Cébelieu

2
, Jean-

François Hangouët
3

1COGIT Laboratory, 2Projet Diffusion des Données,
3
IGN Quality Dpt Institut Géographique

National, 2 avenue Pasteur, F-94 165 St Mandé Cedex

Tel : 33 1 43 98 80 03 ; Fax : 33 1 43 98 81 71

{benedicte.bucher, sandrine.balley@ign.fr, didier.richard, gilles.cebelieu, jean-

francois.hangouet}@ign.fr

SUMMARY
 Process description, once handled by complex knowledge engineering techniques, is becoming more

accessible thanks to Model Driven Architecture techniques such as UML2.0. Meanwhile, the need

increases to describe the production and transformation of geographical data through implemented

tools. Firstly, documenting lineage metadata requires references to shared descriptions of production

processes. Secondly, processes are themselves resources to be managed, e.g. catalogued. This paper

reports on work in progress to describe low level data production processes within the French

National Mapping Agency.

KEYWORDS: Lineage information, Process description, Workflow management, Activity

INTRODUCTION
 Dating back to early Artificial Intelligence reasoning systems to more recent applications in the

business to business (B2B) and enterprise application integration (EAI) areas, describing processes

has gained more and more interest from the scientific community. With the improved representation

of processes in UML2.0, this field, once reserved to knowledge representation specialists, should

even become more widely accessible (OMG, 2003).

 This paper describes a work in progress to improve the description of production processes within

IGN, the French national mapping agency. It is mainly performed at the COGIT laboratory and

benefits from collaboration with people from other departments of IGN, notably data diffusion, sales

support and quality management. The first application of this work is the documentation of lineage

information in data metadata. The resulting lineage metadata will have the form of detailed

descriptions of geographical data production processes and will complement quality measurements

that cannot cover all aspects of data quality. The first section details the context and objective of this

work. The second section depicts related works. The next sections describe our model and a prototype

application.

CONTEXT AND OBJECTIVE

Context

 Descriptions of IGN data production processes exist, such as project management plans, analysis

documents supporting software development, production specifications written at the conception

stage, user guides, specific forms designed to control a process running, or log files. Most of these

descriptions are textual documents that are little distributed and difficult to read. Log files are seldom

archived and never shared with users of the produced data. A model to structure the description of

production process is proposed in the ISO19115 model for lineage information but is somewhat loose.

Lineage information is composed of LI_ProcessStep objects and LI_Source objects. A

LI_ProcessStep has free text properties, description and rationale, plus a dateTime and a processor. A

more formal model is needed to build unambiguous and rich lineage information, as detailed

hereafter.

 A common vocabulary should be used to describe process steps. This could be a process types

register. Theoretically, such a process types register should reference not only generic processes like

"restitution" but also how these processes are carried out in various contexts, for instance depending

on available source data or software.

 Besides, describing a process type is not enough to account for its behaviour and qualify the

resulting data. During a particular realisation, specific behaviours occur that originate specificity

within the data themselves. These specific behaviours may be far-reaching consequences of the

process strategy. For instance some generalisation processes may be said to be non predictable

because they rely on a contextual strategy. These specific behaviours may also be linked to the

"processors", implemented tools or human operators, and their various ways of doing similar things.

Hence, in lineage metadata, a process step should refer to a process type description, like "foreseen

effects: dead ends shorter than 50 meters are removed", and to a process realisation description, like

"observed effects : 7 dead ends removed".

 Lastly, the acquisition of production process description will probably be as distributed as the

production steps are. An application to acquire complete, homogeneous and consistent lineage

information is thus necessary.

Objectives

 Our objective is to propose a model to describe geographical data production process types and

realisations. Such descriptions may be used to infer content and quality information about of the

resulting data. An application based on this model will support the distributed documenting of lineage

metadata, their storage and their browsing. This model should be flexible enough so that in the future

we may extend it to build other process management applications. The following section analyses

related works that can be used to define our model.

RELATED WORK

Workflow management

 Formalisms are proposed to define, implement and exchange business processes, for instance in the

B2B or EAI areas. They may concentrate on the description of actors interaction at an abstract level,

e.g the Business Process Modelling Language (BPML) and UML, or on the implementation based on

Web services, e.g. BPEL4WS (BPMI, 2001)(OMG, 2003b). So far, there exists no consensual

language nor conceptual model for describing processes. The OMG group has released a request for

proposal about a Business Process Definition meta-model to unify existing languages (OMG, 2003).

Figure 1 is an attempt to organise concepts common to most business process description languages.

Operations are performed by performers, human or machine, to change the state of objects or to

produce signals that will trigger other performers to perform other operations. These may be

calculation, communication or scheduling operations. Performers may also be manipulated.

Operation Signal

Manipulated object Performer

Modifies

the state of

Produces

Is understood by

Performs

Has for
 performer

Figure 1. Attempt to organise concepts common to most business description languages.

 Models alternatively focus on the behaviours, i.e. the operations on Figure 1, or on the affected

objects, i.e. the manipulated objects on Figure 1.

 The first type of model relies on the concept of activity, which is a unit of work. A complex activity

is a set of sub activities organised after a control flow. The control flow schedules the data flow and

message flow from outputs to inputs. BPML defines complex activity types, e.g. "Choice", after a

generic control structure. An activity may be triggered by a message sent to one of its inputs or by a

modification of its running context represented as a set of objects. The notion of “grounding” refers to

implemented tools that support the activity, i.e. implemented performers. Business process

groundings often are services. This technology is already being applied in the field of geographical

information. (Brox., 2002) propose a very global model for a geospatial data infrastructure in

Northrhine-Westphalia which includes business process descriptions.

 The second type of model relies on the concept of “transition” between two states of manipulated

objects. A “collaboration” groups transitions between states of the domain. In the UML state diagram,

a collaboration is described as a scenario, a performer as an object, a manipulated object as an

automate (OMG, 2003). Collaboration between agents is used for instance to organise generalisation

operations performed by topographical objects on themselves (Ruas, 1999).

 We can learn several points from these models. A process should be described independently from

the tools that support it, i.e. its description should include a platform independent part. Behaviour-

centred descriptions are not shareable as such. To be non ambiguous, they must be associated with the

description of manipulated objects. Typically, to discover and use a Web service, the user must

somehow understand the meaning of the data exchanged in the messages between the user and the

Web service. This meaning may be conveyed in the message name, e.g. "sendMyName" or

"getPrice", or in the type name, like "name". For Web services to be truly shared, they must be

associated with ontological definitions of the objects they manipulate, like a tourism ontology.

Lastly, what makes process description especially difficult seems to be the description of

synchronisation: how to trigger behaviours or transitions.

Task planning

 In symbolic Artificial Intelligence, reasoning processes have first been represented as mere sets of

rules until it proved more efficient to organise these rules on a certain logic that reflects the

decomposition of an initial task in subtasks (Clancey, 1985). Efficiency referred here to the ease of

maintenance of expert systems.

 The highlight was then put on building modular and shareable descriptions. To achieve this,

(Gomez, 1999), among others, specify the lesson learned in workflow management : not only must

behaviours and manipulated objects be described but their descriptions should not be melted. The

notion of "role" introduced by (Marcus, 1988) is often used to describe behaviour variables as

domain-independently as possible. An example of a behaviour variable is a classification criterion.

These principles have been used in the ESPRIT project KADS to propose a methodology to design

knowledge-based systems (Schreiber, 2000). (Bucher, 2003) applies these principles to describe

geographic application patterns through a tasks and roles based model, the TAGE model.

 Besides, the objective of symbolic IA has shifted from building a machine that reasons, to building a

machine that helps a human to reason, and to building machines that reason together. Hence,

important tasks are communication and negotiation to ensure collaboration.

 We can list the following interesting clues from this research. Again, synchronisation knowledge

appears to be a crucial element. Again, to be shareable, behaviours description, i.e. problem-solving

models, must be associated to domain ontologies. Moreover, the description of behaviour variables as

domain elements must be as generic as possible for a process description to be as much reusable as

possible. This description often relies on roles. From our work on TAGE, we have learned another

clue concerning the reusability of process type descriptions. If a task is reused as a subtask in the

decomposition of another task then it should appear in the decomposition as follows :

– with a reference to its generic description,

– with the specifications of its inputs and outputs in the current decomposition.

Last, what makes the description of reusable processes difficult is to describe and use the

relationships between descriptions of a process and another more specific process.

PROPOSED MODEL
 This section first underlines the specifications of our model and then reviews how a process is

described in our model.

Requirements

 Description of manipulated objects is handled in data metadata and in specific vocabularies used in

production units. The tool description model is the subject of Yann Abd El Kader’s PhD work at the

COGIT laboratory. He adapts the OWL-S model, dedicated to Web services, to describe functions

available in IGN software resources, which are not Web Services. The relationship between both

works is that the realisation of some processes consists in applying an implemented function.

 Our objectives are less ambitious than those of the literature models. We concentrate on describing

processes that run programs to yield geographical data as an output rather than on processes that are

made up of interactions between people. Neither do we describe IGN organisation, nor integrate

people’s beliefs, wishes or culture, nor describe multi-agent collaboration. As far as synchronisation

is concerned, we will first limit the model to simple synchronisation as proposed in most procedural

languages (if…then, repeat…). We do not wish to automatically implement any kind of process after

its abstract description, so we need less formalisation than meta-models like UML2 do.

 Eventually, the main objectives of our model are the following.

 It should support the creation of generic process types descriptions that may be reused to describe

more specific processes or realisations of processes. More precisely, each process type description

should be reusable in a more specific description unless it is specific enough to correspond to only

one possible realisation. And descriptions may be created dynamically.

 We wish to adopt an iterative approach, i.e. to propose a prototype and then improve on it with the

help of experts and experience. We expect these experts to be willing to interact not only with a user

interface but also with the model itself. Hence the first versions of the description model should be as

readable as possible, so that we can work with experts directly on the model and not systematically

through a user interface. The first versions are dedicated to documenting lineage information. Yet,

this model should be extensible so that we can further enrich it with elements required by process

management applications.

An object representation of activity diagrams

 Since activity diagrams are more familiar to most experts we work with than tasks models or state

diagrams, we base our model on UML2 activity diagram stereotypes where a process type is

described as an activity. Thanks to not-too-ambitious objectives as exposed in the preceding section,

we can drastically simplify UML2 to work on a much more readable model. We keep some core

elements, sometimes modify them. For instance, in UML, the class Action addresses executable units

of work, possibly the invocation of an Activity. In our model, we interpret the concept of process as a

"a set of potential process executions in a certain context". Thus, an executable process is of the same

type as a non executable process, only its set of possible executions is more limited. For instance, a

process that appears in the decomposition of another process is an Action in UML2 whereas, in our

model, it is of the same nature as a stand alone process, only it refers to executions that take place in a

more restricted context.

 « Data set matching »

Geometrical

matching

Schema

matching

refDS

compDS

links

Planning the

data matching

 Loop

1 2 3

4

5 6

Figure 2. Graphical representation of the activity "data set matching".

 Figure 2 illustrates a summary activity diagram of the Activity "Data set matching". Rounded

rectangles are activities; arrows are edges between activities, possibly supporting object flows

(numbered rectangles). The circles are control: activity starting point and end point, loop or other

control structure. The terms "refDS" – for “reference data set”-, "compDS" –for “compared data set”-

and "links" are the names of the process variables.

ActivityNode

Activity

ControlEdge

ObjectFlow

edge node

context context

0..n0..n
source

target

0..11

0..n

1 0..n

transformation

0..1

1

1

0..n

0..n

Figure 3. Class diagram of the main objects we use to describe an activity.

 As illustrated on Figure 3, the object-oriented description of a process naturally relies on Node and

Edge classes. Nodes may be Activity or Control objects. Edges may carry control messages and

objects. An edge that carries an object may also carry transformations on it that are activities with a

single input and a single output. The carried object may come from the source activity of the edge or

it may be selected from the context of the edge. Edges are described in the order in which they should

be navigated over. Figure 4 represents some elements (not all) of the object representation of the

activity data set matching as performed in the GeOxygene platform..

DSMatching : Activity

valRefDS : DataSet1

...

tool : geox.appariement package

SMatching : Activity

tool : GeOxygene plate-form,

Appariement package

MatchingPlanning : Activity

Start : Control

L1 : Loop

repeatNode :

clauseNode :

endNode :

e1: Edge

e2: Edge

e3: Edge

e4: Edge

source : L1.repeatNode

target : GMatchingNode

edgesnodes

f1 : ObjectFlow

sourceVarName : refDS

targetVarName : refSchema

transformation : GetPropertyVar(« schema »)

SR1 : SimpleRole

type : “geoxygene.DatSet”

intention : DataSet1

value : Set

HLR1 : HomogeneousListRole

type : “geoxygene.FeatureAssocation”

value : Set

refDS

fMatches

Figure 4. Instances diagram of the object representation of the process Data set matching.

 The class Role describes the Activity variables. A Role instance describes a set of possible values.

Several subclasses of Role are defined to describe all possible types of variable, like SimpleRole,

ListRole, HomogeneousListRole or TreeRole. We also adopted the following convention: in case a

variable called myVariable has for value a SimpleRole, e.g. the variable refDS on Figure 4, then a

variable called valMyVariable may be added to the Activity description to refer directly to the

intentional description of this SimpleRole value set, e.g. valRefDS refers directly to DataSet1 on

Figure 4.

Process description creation and reuse

 Before describing how our model supports the reusability of descriptions, we summarise the

successive temptative models that have led to it. We have tried out several models to meet our

requirements, especially the description of the relationship "is more specific" between process

descriptions, relationship on which reusability is based. In our model, a process is more specific than

another if its set of potential executions is included in the other’s.

 Describing every process as classes extending an abstract class Activity seemed adapted to

applications dedicated to manage a same process. It was not adapted to applications managing

different types of processes, like the dynamic creation of process descriptions. Moreover, the

relationship “is more specific” between process types cannot be supported by class extension. Indeed,

a process may have multiple relationships of the form “has a set of possible executions included in the

set of possible executions of”.

 Describing every process as instances of a generic class Activity, e.g. tasks in TAGE, either lacked

expressiveness or yielded verbose descriptions.

 Recently, we tried out a dual representation where a process was described through a class extending

an abstract class Activity and through an instance of a metaclass ActivityType. This revealed a heavy

approach where two different models were to be managed in a consistent way.

 We have chosen a more flexible and simple way, which is introduced in the preceding section. We

describe hereafter how it supports the reusability of descriptions. A process type is described by an

instance of the class Activity, or of a class extending Activity. This allows specific procedural

knowledge to be integrated in the description of a process type, in the form of class methods. For

instance, we define the class GetPropertyVar to describe the process of getting the value of a

property. An instance variable of GetPropertyVar is the name of the property. In the example on

Figure 4, the object carried by the ObjectFlow f1 is the value of “refDS” in the activity DSMatching.

It is transformed through an instance of GetPropertyVar with property name "schema". Hence, the

schema of the reference data set is transferred to the target variable.

 Much care was put on describing the “is more specific” relationship between two process types, i.e.

between two activities. It may rely on extension between Activity class definitions. It may also rely on

two properties of an ActivityI. The roleSpecification property expresses how the roles described in the

class definition are specified in the current instance. The model for this property is detailed in the next

section. The specification property refers to a more generic Activity and to roleSpecification applied

to the roles of this more generic Activity. An activity may have several specification properties. This

is illustrated on Figure 5.

Figure 5. The description of the “is more specific” relationship between activities.

Roles specification

 A role specification is described by the name of the role, the name of the role inner variables in case

it is a structured role, e.g. the variable "Leafs" in TreeRole, the name of a specification method, the

arguments of this method. The methodName may be either of the form

“myPackage.myRoleStructure.mySpecificationMethod” or “myDomain.myType

MySpecificationMethod". For instance, a user may reuse the DatSetMatching description and specify,

in his description, that he works on datasets with linear elements. This may be done by writing a

specific method in the DataSet class like specifyGeometriesType. Or, if the class

LinearObjectDataSet exists, it may be done by using a generic method in the RoleSimple class like

specifyType.

roleSpecification
v

Activity

RoleSpecification

+ roleName: StringBuffer
+ roleVarName: StringBuffer

+ methodName:StringBuffer

+ methodArg:Array

0..n

< genericActivity0..n

< roleSpecification

0..n

roleSpecification
v

Activity

RoleSpecification

+ roleName: StringBuffer
+ roleVarName: StringBuffer

+ methodName:StringBuffer

+ methodArg:Array

0..n

< genericActivity0..n

< roleSpecification

0..n

Describing the resulting data

 Experts usually account for a result either by stating that "this process usually has such-and-such

effects" or by stating that "this process works like this", where the described behaviour has immediate

effects on the results. Two properties have been added to an Activity to enhance the description of the

resulting data: effects and mechanisms. Activity effects are composed of a description and a

confidence, e.g. (every building gets squared; sure), (missing z value are often set to 0 ; probably).

Activity mechanisms are composed of a performer, a description and a confidence, e.g. (the tool

Geoconcept; rebuilds the topology; hypothesis).

Realising a process

 In our model, every Activity has a method realise, which returns a ActionPlan. This ActionPlan is a

list of actions a user should perform to realise the activity, like "Put these data in this file", "Click on

the command File/New/Project on the user interface", "Write the command … ". Three types of

realise methods must be distinguished.

 When the Activity can be realised through classical java procedures, the return ActionPlan is null and

the method actually performs the activity. This is the case when the Activity inputs and outputs are

java objects and when the behaviours are encoded in existing API or in a tool that has a java

compliant programmatic interface.

 When the Activity corresponds to the use of an implemented tool that does not have a java compliant

programmatic interface, the ActionPlan is a list of possible preprocessing steps and of actions on the

tool user interface.

 When the Activity is a complex Activity, the method realise navigates its graph of Nodes. At each

Node, it invokes the realise method. If the return value is non null, it waits for the user to perform the

instructions listed in the current ActionPlan to navigate the rest of the graph.

 In most cases, writing these realise methods rely on the tool metadata model. They have not been

written in the current prototype because documenting lineage metadata does not require to realise

described processes.

CONCLUSION
 This paper describes how we build a generic model to describe low level data production processes

within IGN. We propose a first version of our model and then refine it with the help of people who

use it. As compared to models found in the literature, our model is much simpler and readable. This is

possible because it meets so far less ambitious objectives than existing models. We focus on building

shareable and reusable process description to support the documentation of lineage metadata. Yet, we

remain close to UML2 so that in the future we may refine our model to meet other process

management objectives.

 A first prototype has been implemented. Its current function is to help users specify unambiguous

values for their activity roles by referring to an existing glossary or model of their domain. The

interface is so far in French because it is intended for internal use. So far, we have handled the case

where the domain model is a set of java classes, as is the case at the COGIT laboratory. The user can

load any class description, create a new object and browse its attributes and relations to specify them

through graphical components only. Figure 6 presents the edition of an Activity object and the

possible ways to define a value for a property -here an ActivityNode- : the user may create either

create a new object, relying on the constructors or other methods, or create a reference to an existing

object.

Figure 6. Snapshot of our prototype application illustrating the edition of objects through graphical

components.

 The system records the specifications performed by the user through the interface. So far, the user

may browse attributes, invoke any type of method, create and reference objects. Expression of

constraints on literal values is not currently managed.

 On-going work concentrates on editing process description through an activity diagram like display

of the model relying on the GEF framework. The creation of these descriptions will be tested with

users from the COGIT laboratory and from some IGN production units.

BIBLIOGRAPHY
Brox, C., Bishr, Y., Senkler, K., Zens, K., Kuhn, W., 2002, Toward a geospatial data infrastructure

for Northrhine-Westphalia, Computer, Environment and Urban Systems 26, 2002, pp.19-37.

Bucher, B., 2003, Translating user needs for geographic information into metadata queries, 6th

AGILE Conference, France

Business Process Management Initiative, 2001, BPML1.0, Business Process Modelling Language

Clancey, W., 1985, Heuristic Classification, University of Stanford report STAN-CS-85-1066

Gómez A., Benjamins R., 1999, Overview of Knwoledge Sharing and Reuse Components :

Ontologies and Problem-Solving Methods, Proceedings of the IJCAI-99 workshop on Ontologies

and Problem-Solving Methods, Stockholm, pp. 1.1-1.15

Marcus S., 1988, Automating Knowledge Acquisition for Expert Systems, Kluwer Academic, Boston

Object Management Group, 2003, Business Process Definition Metamodel, Request for Proposal

Object Management Group, 2003, UML 2 Superstructure Final Adopted Specification

http://www.omg.org/cgi-bin/doc?ptc/2003-08-02

Ruas, A., 1999, Modèle de généralisation de données géographiques à base de contraintes et

d’autonomie, Thèse de doctorat en Sciences de l’Information Géographique de l’Université de

Marne la Vallée

Schreiber, A. Th., Akkermans J. M., Anjewierden, A.A., de Hoog, R., Shadbolt, N. R., Van de Velde,

W., Wielinga, B. J., 2000, Knowledge Engineering and Management, The CommonkADS

Methodology, MIT Press

