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1 Introduction 

The lowest portion of the Earth’s atmosphere, known as the 

boundary layer (ABL), is a critical region of energy exchange 

and weather development (Stull, 1988). However, it is also 

one of the most challenging portions to measure (Frew et al., 

2012). Approximately 1-km thick, the ABL is difficult to 

monitor via manned aircraft, which cannot safely sustain 

flight at such low altitudes. Weather balloons and radiosondes 

are an alternative option, but they cannot be controlled from 

the ground and are not recoverable (Hill et al., 1970). 

Networks of ground weather stations (mesonets) capture 

meteorological measurements near the surface, but towers are 

usually spaced 10-40 km apart and only extend 10 m above 

ground (McPherson et al., 2007), which does not fully capture 

the ABL. Furthermore, the spatial resolution of measurements 

collected from these towers does not permit observation of 

microscale surface-atmosphere interactions characterizing the 

ABL.  

Such limitations have spurred advances in atmospheric 

remote sensing technologies. Satellite-based systems, such as 

the Geostationary Operational Environmental Satellite 

(GOES), have been key for weather forecasting and research 

over the past several decades; however, satellite-based 

systems are also limited in their spatial and temporal 

resolution and the variables they measure. Weather 

surveillance radar (WSR), in use since the 1950s, has been 

transformative in forecasting and storm tracking, particularly 

the WSR-88D radar network (NEXRAD). However, it too is 

limited in the type of data it can capture (i.e. it cannot measure 

thermodynamic variables such as temperature) and is limited 

in the extent of the ABL it can sense due to the angle of the 

reception cone, Earth’s curvature, and interference from 

mountains and buildings (LaDue et al., 2010; Bendix et al., 

2016).  

Limitations in ABL sensing technologies have led to the 

development of small unmanned aircraft systems (sUAS) to 

fill monitoring gaps (Frew et al., 2012; Frazier et al., 2017; 

Hemingway et al., 2017). Employing sUAS for atmospheric 

research dates back to at least 1970 when Hill et al. (1970) 

captured temperature, pressure, and humidity measurements 

in the ABL. More recently, sUAS have been used to capture 
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The lowest portion of the Earth’s atmosphere, known as the Atmospheric Boundary Layer (ABL), is a critical region of energy 
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determine the spatial distribution of those values via the maximum and minimum axes of anisotropy and also determine how those 

measurements compare to mean wind direction measured from a nearby meteorological ground station.  Our results show that spatial 

continuity is greater in directions transverse of the wind, while horizontal mechanical mixing of the ABL in directions analogous to the 
mean wind direction result in less spatial continuity. These results can aid in future atmospheric mission planning and better 

understanding of the processes affecting scaler variables, such as temperature in the ABL. Future work is needed to apply these 

methods in a variety of atmospheric and topographic conditions.  

Keywords: drones, unmanned aerial vehicles (UAV), spatial sampling, weather, micrometeorology 



AGILE 2018 – Lund, June  12-15, 2018 

 

2 

 

basic boundary layer measurements (Knuth et al., 2013; 

Hemingway et al., 2017), sample severe storms (Frew et al., 

2012), and monitor airmass boundaries (Houston et al., 2012).  

Despite a surge in studies using sUAS for meteorology and 

atmospheric physics and initial work to determine the vertical 

distribution of atmospheric parameters (Hemingway et al., 

2017), little work has focused on the horizontal distribution of 

thermodynamic variables, and appropriate sampling scales for 

these measurements remain unknown. This type of 

information could ultimately contribute to a better 

understanding of turbulence by allowing fine-scale 

characterization of horizontal atmospheric processes. 

The objective of this study is to characterize the horizontal 

(x,y) distribution of temperature using variogram analysis—a 

common geostatistical technique used in the geographical 

sciences—of atmospheric samples collected from a sUAS.  

Specifically, we (1) determine the maximum and minimum 

directions of spatial continuity (i.e. anisotropy) of temperature 

and (2) determine how these directions relate to the mean 

wind direction. This information will aid future mission 

planning by providing insight into how atmospheric variables 

are distributed across space and foster a better understanding 

of the processes taking place in the ABL. 

 

 

2 Study Site and Data Capture 

Data were collected on 16 November 2017 at Gloss Mountain 

State Park in northwest Oklahoma, USA (36.366°N 

98.5788°W). The site is located in a semi-arid grassland 

ecoregion, and a prominent mesa rises approximately 70 m 

above the surrounding elevation of 426 m MSL. Conditions 

were clear with minimal cloud cover at the time of the flights.  

Data were collected using a DJI Phantom 3 (DJI, Shenzhen, 

China), which is a quad-rotor weighing 1,280 g and 

measuring 350 mm diagonally in size. The on-board battery 

provides approximately 25 minutes of flight time, 

necessitating two segments to survey the entire study area. We 

captured atmospheric measurements with an iMet XQ sensor 

(International Met Systems, Grand Rapids, MI, USA). The 

XQ sensor is a self-contained unit with temperature, relative 

humidity (RH), and pressure sensors, and a GPS receiver. It 

weighs 15 g, has a 16-mb storage capacity, and a 120-minute 

battery life. The temperature sensor is the bead thermistor 

type with a response time of 2 s and a sampling rate of 1hz.  

Surface weather observations during the flights were 

acquired from the Oklahoma Mesonet—a network of 121 

automated metrological and environmental monitoring 

stations positioned across the state of Oklahoma, USA 

(McPherson et al., 2007). The closest station, Fairview, is 

located 13 km southeast of the study area at an elevation of 

405 m. The mean temperature captured at Fairview during the 

flight was 15.26° C (standard deviation 0.36° C). Mean wind 

speed was 5.36 m/s (standard deviation 0.62 m/s).  

Aircraft take-off and landing occurred on the mesa summit. 

Eighteen transects, oriented in east-west, were flown (Figure 

1). Transects were approximately 830 m and separated by 

approximately 55 m. Between battery changes, the aircraft 

was landed, re-launched, and repositioned in the transect 

formation where data collection was aborted to continue the 

mission. The approximate flight speed was 8.5 m/s. A 

sampling rate of 1 hz resulted in measurements captured 

approximately every 8.5 m. Data collected during take-off, 

landings, and re-positioning were excluded, resulting in 1,924 

measurements collected between 12:01 and 12:38 Central 

Standard Time (UTC-6). The average flight altitude was 570.4 

m MSL. 

 

 

Figure 1: Flight path with locations of take-off and landing 

 
 

 

3 Data Analysis 

Since the physical processes affecting the spatial variation of 

geographic phenomena on Earth are complex, their behavior 

may appear random (Oliver and Webster, 2015). The same is 

true of atmospheric variables, such as temperature, since 

movements are governed by the non-linear effects of turbulent 

motions, or eddies, in the ABL (Stull, 1988). There remains 

though an inherent structure to the data, and values have a 

statistical relationship relative to their spatial location. This 

statistical relationship can be exploited to deconstruct the 

spatial structure of the variables. The variation between the 

variable and itself at any two locations is assumed to be a 

function of space, and this relationship can be described using 

the variogram, which is a model of the spatial continuity of 

the data. The estimator for calculating a variogram from 

sample data is: 

 

            ̂( )  
 

  ( )
∑ * (  )   (    )+

  ( )
                  (1) 

 

where  (  ) is the observed value of   at location    separated 

by distance  , and   is the number of sample pairs (Cressie, 

1993). The variogram has several key characteristics that can 

be used to describe the spatial structure of the variable (Figure 

2). The point at which the semivariance reaches its upper 

bound and levels off is called the sill.  The separation distance 

between points, or lag distance, at which this occurs is called 

the range. Beyond the range, spatial dependence decreases. If 



AGILE 2018 – Lund, June  12-15, 2018 

 

3 

 

the variogram intersects the y-axis at a semivariance value 

greater than zero, this is called the nugget effect and results 

from microscale variability at short lag distances or 

measurement error (Cressie, 1993). 

 

 

 Figure 2: Typical structure and key components of a sample 

variogram. 

 
 

 

Variogram analysis was completed using the gstat package 

(Pebesma, 2004) for R. Pairs of points separated by lag 

distance (h) were grouped into discrete, 6 m-wide bins to 

allow estimation of the semivariance function at discrete lags. 

The bin width was slightly less than the spacing between 

transects following Isaaks and Srivastava (1989).  Bins 

containing fewer than 100 pairs were omitted from analysis so 

as not to influence variogram behavior with unreliable data. 

We anticipate the variogram will reach its sill at a distance 

complementary to the boundary layer thickness, or 

approximately 1 km (Stull, 1988).  

When the statistical relationship between a measured 

variable is also a function of the direction in which the points 

are situated, the spatial relationship can be modeled using 

directional variograms to reveal anisotropy. The angular 

tolerance for each direction tested should be wide enough that 

sufficient point pairs are included but narrow enough that the 

degree of anisotropy is not clouded by combining pairs from 

too many directions (Isaaks and Srivastava, 1989). Sample 

variograms were calculated in six directions with a 30° 

tolerance angle. Directions began at 30° and increased in 30° 

increments until 180°. Degrees correspond to traditional 

compass headings where 0° (or 360°) is North, 90° is East, 

180° is South, and 270° is West. Since  ( )     (  ), a 

sample variogram calculated for any particular direction is the 

same as it would be calculated in the opposite direction 

(Isaaks and Srivastava, 1989). For example, the variogram for 

180° is identical to that for 360°. 

 

4 Results and Discussion 

Sample variograms for the six compass directions (Figure 3) 

show the differences in distance values where   ( )       . A 

 ( )value of 0.3 was selected for comparison because that 

value was reached in all six directions at distances with 

sufficient point pairs to be considered reliable, which is a 

precondition for determining anisotropy (Isaaks and 

Srivastava, 1989). In general, this  ( ) value is reached at 

distances increasing from 400 m at 30°, to a maximum value 

of 900 m for the 90o direction. Distances corresponding to a 

 ( ) value of 0.3 then decrease back down to just under 400 

m for the 150° and 180° directions. Long distance values 

corresponding to  ( )     , such as those observed in the 

90° direction, indicate that point pairs separated by a longer 

distance are more similar, or spatially continuous, than those 

observed for directions with shorter corresponding distances. 

By interpreting the distance values corresponding to   ( )  
    across all six directions, we can  conclude that 

temperature exhibited strong and coherent spatial continuity in 

the east-west direction and less continuity in the north-south 

direction. 

 

 

Figure 3: Sample variograms calculated for the six directions. 

Dashed lines indicate distance where  ( )         

 
 

 

To further visualize the anisotropy of the temperature 

measurements, the distance values for γ( )        were 

plotted as lines on a compass rose diagram (Figure 4). Line 

length corresponds to the distance at which  ( )      was 

reached in each directional variogram (Figure 3). Lines are 

oriented in the direction the sample variogram was calculated. 

The ellipse (Figure 4) represents two standard deviations of 

the spatial distribution of the plotted lines. The major axis of 

the ellipse was computed as 81°, which is the direction where 

there was the most similarity in temperature values across 

space (i.e., the most spatial continuity).  



AGILE 2018 – Lund, June  12-15, 2018 

 

4 

 

 

Figure 4: Compass rose depicting sample distances 

corresponding with  ( )      across the directional sample 

variograms. 

 
 

 

To interpret these findings in the context of the atmospheric 

conditions during sampling, we acquired wind speed and 

direction data from the Fairview Mesonet. Mean wind 

direction during the flight was 147° (SSE to NNW), which 

corresponds roughly to the 150° directional variogram. This 

variogram exhibits a classical variogram shape, with 

semivariance values increasing until a sill is reached at a 

distance of approximately 800 m (Figure 3). This range 

distance corresponds approximately to the ABL thickness of 

about 1 km (Stull, 1988), which met our expectation. The 

150° directional variogram was also among the shortest 

distances at which  ( )      was reached. Together with the 

findings above that temperature exhibited strong and coherent 

spatial continuity in the east-west direction, we can conclude 

that greater spatial continuity occurs in the direction 

transverse of the wind.  While these findings are not 

unexpected because there is greater forced convection, or 

mechanical mixing, in the direction of the wind causing 

temperature values to be more heterogeneous across space, 

this hypothesis was not previously verifiable using available 

sensors and instrumentation.  

While these results are encouraging for capturing 

atmospheric structure, several limitations should be noted. 

First, we only analyzed data from a single date and location, 

and repeated analyses under different environmental 

conditions along with concurrent measurements from multiple 

sUAS would help improve our understanding of the 

universality of the findings. While the flight time was 

minimized, it is possible that the temporal change in 

temperature across the study area during data collection could 

have impacted results. Again, having multiple sUAS 

collecting concurrent measurements could help alleviate this 

concern in future campaigns. Similarly, the effect of the wind 

on the sUAS may have contributed to measurement errors. 

Wind effects were mitigated by positional stabilization using 

GPS on the aircraft’s autopilot system, but the presence of a 

nugget on the variograms may be a reflection of measurement 

error. Additionally, while we did not specifically test for 

topographic effects, it is possible that the relief across the 

study area influenced the spatial structure of the temperature 

measurements. The mesa below the flight path is oriented 

primarily in a north-south direction. Wind shear, generated 

through frictional drag caused by the abrupt change in surface 

elevation, likely contributed at least partially to the spatial 

discontinuity in the temperature measurements in the north-

south direction. Additional research is needed to determine the 

exact nature of these terrain impacts.  

 

 

5 Conclusion 

This study used variogram analysis to model the structure and 

anisotropy of temperature measurements collected from a 

sUAS in an ABL. We found that temperature measurements 

in the direction of the measured mean wind direction were 

less spatially continuous than those captured transverse of the 

mean wind direction. This structure is likely due to a 

combination of mechanical mixing in the ABL and the forces 

of wind shear caused by the topography of the study area. 

Additionally, the spatial structure depicted in the directional 

variogram most closely aligned with the mean wind direction, 

which corresponded to the expected ABL turbulence scale of 

approximately 1 km, thus supporting prior theories.  
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