
1 Introduction

The increasing trend of opening governmental data sets in

Europe has positively affected the provision of geospatial

services. Often the service provider (i.e. the user of the

governmental data sets) fetches data sets from the download

services of the data providers and adds some additional data

on the top of those data sets. Sometimes, a lot of effort is put

on the additional data, which uses data sets as a spatial

framework. The value of the additional data and the provided

service is dependent on the accuracy and quality of the used

framework data sets. Thus, the update process of the used data

sets is vital for the quality of the provided services.

Data producers provide these updates typically in bulk,

which means that the old data set is replaced with a new one

as a whole. This procedure causes enormous update processes

for the service providers, who have to relink their own data to

the objects in the new framework data set. It also leads to

lower update frequency, hence worsening service quality.

Services built on top of national data sets in Europe include

Web Services obliged by the INSPIRE directive [3] and

defined by the INSPIRE regulations for implementing the

Network Service [2]. The data themes introduced in the

INSPIRE directive often involve data from multiple data

providers, thus a separate service database to provide the

INSPIRE compliant service is needed [4].

All of this has led to the situation, where automatic

processes for updating the data are needed. In incremental

updating, only the changed data from the original data set is

delivered to the service providers, in a way that it can be

feasibly used to update the external data set [1].

One method of implementing incremental update is Open

Geospatial Consortium’s (OGC) GeoSynchronization Service

(GSS) candidate standard [8]. GSS provides guidelines to

serve changes data in standardized format over the network.

We have piloted GSS in the context of the INSPIRE directive.

The case in the pilot was that Finnish Environment Institute

(SYKE) provides spatial data set for a hydrologic network,

which is based on the geometries produced by the National

Land Survey of Finland (NLS). [5]

To use GSS specification for serving the incremental

updates, we had to design a database model to manage the

changes data. In addition, we need an interpreter for deriving

the changed features in NLS’s topographic database to the

actual changes data. In this paper, we investigate the

possibilities of a Web Service based on GSS to deliver the

incremental updates from NLS’s topographic database to the

service providers in standardised format.

Section 2 of this paper presents the principles of OGC’s

GeoSynchronization Service. Section 3 presents the principles

of the designed GSS Service Module. Section 3.1 describes

Changes Data Interpreter, which derives the actual changes

data from the changed features in NLS topographic database.

Section 3.2 describes the database model used to manage the

changes data. Section 3.3 presents the implementation of the

actual GSS component, which allows the changes to be

queried. Section 4 discusses the possibilities and advantages

of GSS Service Module to provide the changes data of NLS’s

topographic database.

2 OGC’s GeoSynchronization Service

The basic idea of the GSS candidate standard is that all the

data collectors can propose changes to the features of the data

provider. The proposed changes are reviewed in the service

and either accepted or rejected. GSS provides the changes

data for the data users as events. The user can subscribe to the

service for automatic updates or use the query API, which

allow all the events to be queried. [8]

There are three different feeds defined to implement GSS in

the candidate standard. A Proposed Change feed (later Change

Feed), Resolution feed and Replication feed. The feeds are

defined in ATOM feed format [6]. Change feed is for the

proposed changes from the data collectors to GSS and

Resolution feed for the response, indicating if the proposed

Feasibility of OGC’s GeoSynchronization Service for delivering the

incremental updates from a national topographic database

 Eero Hietanen, Lassi Lehto and Pekka Latvala

Finnish Geospatial Research Institute (FGI)

National Land Survey of Finland

Geodeetinrinne 2

02430 Masala, Finland

eero.hietanen@nls.fi

Abstract

Increasing use of the geospatial data has led to the situation, where automatic processes for updating the data are needed. One method to

implement a process of incremental update is OGC’s GeoSynchronization Service (GSS). We have piloted GSS in a multi-provider setting,
where Finnish Environment Institute provides spatial data set for a hydrologic network, which is based on the geometries produced by the

National Land Survey of Finland (NLS). In this paper, we investigate the feasibility of a Web Service based on GSS to deliver the

incremental updates from NLS’s topographic database to service providers in a standardised format.

Keywords: incremental update, GeoSynchronization, Web Feature Service Transaction, service database.

AGILE 2015 – Lisbon, June 9-12, 2015

changes are accepted. Replication feed is for serving the

changes data to the users. In our study, we are dealing with

authorized changes made by the data provider, thus

Resolution feed is not investigated in this paper.

The candidate standard of GSS describes a query method

for Replication feed. The defined query operator is

GetEntries, which allows the events to be queried using

spatial or non-spatial predicates. The response to this query

operation is custom-made Replication feed containing all the

events satisfying the query predicates.

3 GSS Service Module

Implementation of the GSS Service Module consists of four

components: Changes Data Interpreter, Table of existing

feature IDs, Changes Database and GSS component (Figure

1).

Figure 1: Data flow of GSS Service Module

In the first phase of the process, a list of the IDs of the

features existing at a certain moment in the data provider’s

data set is stored to the database. GSS Service Module stores

and provides all the change information from the time after

that moment. The changed features are fed to the Changes

Data Interpreter, which creates the Change feed (Section 3.1).

The Change feed is sent to the GSS component (Section 3.3),

which controls the Changes Database (Section 3.2) and serves

the Replication feed to the data users.

3.1 Changes Data Interpreter

The data of NLS’s Topographic database are stored in the

Smallworld environment. The database has all the history

features, but there are no links between the new and old

features. The life spans of the feature objects are managed

with three separate attribute information: unique ID, begin of

life span and end of life span. If a new feature is added to the

database, the feature will have new values for the unique ID

and for the begin of life span attributes. If the feature is

deleted, it will keep the same ID and have a value for the end

of life span attribute. If the feature is updated, it will keep the

same ID and have new value for the begin of life span

attribute. In addition, a history feature with new values for the

ID and for the end of life span attributes is made to represent

the feature before the change. All the changed features,

including new, updated and deleted ones, can be fetched from

the database using time constraints.

Changed features can be retrieved from Smallworld

environment in a text based format. However, any other

generic format, which can be handled with GIS tools, would

be fine. To interpret the type of the change of the particular

feature, we need a table of IDs of the features existing in the

NLS’s topographic database before the changes (Table of

existing feature IDs). There are three types of change

operations we are interested in: INSERT, UPDATE and

DELETE. Those are operations of Web Feature Service

(WFS) Transaction [7]. When the IDs of the changed features

are compared with the table of existing IDs, corresponding

WFS-T operations can be derived:

 Feature has an old ID and has not the end of life span

attribute: Transaction operation is UPDATE.

 Feature has an old ID and has the end of life span

attribute: Transaction operation is DELETE.

 Feature has a new ID and has not the end of life span

attribute: Transaction operation is INSERT.

 Feature has a new ID and has the end of life span

attribute: Recognized as a history feature.

The Changes Data Interpreter is implemented with Python

programming language using Django Web framework. This

component processes the changed features data, produces the

correspondent WFS Transaction operation and sends the data

to GSS.

3.2 Changes Database

There are multiple ways to store the versioning data. In the

prototype, the Changes database was designed to be simple. It

constitutes of one single database table, where one record

corresponds one change event of a single feature. Table 1

describes the columns of the database table.

Table 1: Structure of the Changes Database Table.

Column Data Type Description

GID integer Unique identifier of the

feature

Type string Name of the feature class

Change Time date/time Timestamp of the change

Operation string INSERT/UPDATE/DELETE

Transaction string The change, encoded as WFS

Transaction operation

Geometry geometry Geometry of the feature after

the change. If the operation is

DELETE, then before the

change.

EntryID integer Unique identifier of the

change event

Author string Publisher of the change

AGILE 2015 – Lisbon, June 9-12, 2015

This simple solution enables efficient queries based on time

of change, feature type, feature ID and the area of interest.

Transaction column is implemented to reduce the encoding

time, when formatting Replication feed according to the

query. Although, all the information needed for WFS

Transaction operation is already in the table, Transaction

column is implemented to reduce the encoding time when

formatting Replication feed according to the query.

3.3 GSS implementation

In the prototype, GSS component is implemented as a Java

Servlet. Two main functionalities are to process the Change

feed and to provide the Replication feed. GSS receives the

incoming Change feed as WFS-T encoded HTTP POST

request, parses the contained information and stores it to the

Changes Database. Change feed is not implemented according

to the OGC’s GSS candidate standard, because in the studied

update process it is used only as an inner procedure of the

GSS Service Module between the Changes Data Interpreter

and the GSS component. Since WFS-T DELETE operation

does not include the geometry of the feature, we need another

solution to add the geometry of the deleted feature into the

Changes Database. One option is to add separate geometry

information to the Change feed, in addition to WFS-T

operation.

In another role, the implemented GSS component works as

a query API, which returns Replication feed in ATOM format.

The query operation according to GSS candidate standard is

GetEntries and it works as a HTTP GET request. Events can

be filtered with the ID of an event or a feature and with

temporal and spatial filters. Although FEATUREID filtering

parameter is not according to the GSS candidate standard, it

was added to feasibly get the whole change history of a

certain feature.

The GetEntries query returns a custom-made Replication

feed, including the filtered events. The response is encoded in

ATOM feed format according to the GSS candidate standard.

Users of the service can use the WFS Transaction operation,

encoded inside the ATOM content to update their own data

sets. In addition to GetEntries operation, there is a custom-

made GetEntryIdObjectGeometry operation to get the

geometry of a certain change event. This feature was seen

useful especially when exploring the change events provided

by a GSS in a map application.

4 Advantages of the GSS Service Module

The prototype implementation of GSS Service Module has

been developed for the specific update process between two

data providers. In the demonstration, changed features, which

were fed to the Changes Data Interpreted, were created with

an OpenLayers based client application. Another OpenLayers

based client application was used to demonstrate the updating

of a hydrologic network according to the Replication feed.

The designed process is found to be appropriate for this

particular case. However, this kind of GSS Service Module,

which serves incremental updates, has much more application

possibilities. Introduced solution works both for a whole

dataset, when larger amount of features need to be

synchronized at once, and for a more limited dataset, where

manual controlling is needed and features are updated one-by-

one.

The described Changes Database implementation with GSS

query API provides access to the whole version history of the

source data set. Version history would be complete, if the

original version of the data set was also available through the

service. It would allow deriving all the different states of the

data set during its history. Full version history gives service

providers an opportunity to choose the most appropriate

update frequency for their service databases.

The introduced GSS Service Module solution does not solve

the problem of appearing or disappearing IDs, which emerges

when separate features are merged to one or one feature is

divided into two. This will be part of the further studies on the

subject. Another need for further investigations is enabling the

synchronization of different schema structures, scaling the

service to large amounts of data and finding methods for

ensuring the correctness of the update processes.

5 Acknowledgment

The work described in this paper has been co-funded by the

National Land Survey of Finland, the Finnish Environmental

Institute and the Finnish Ministry of Agriculture and Forestry.

References

[1] A. Cooper and A. Peled. Incremental Updating and
Versioning. 20th International Cartographic Conference,
Beijing, Vol 4, pp. 2804-2809, 2001

[2] European Commission. COMMISSION REGULATION
(EC) No 976/2009 of 19 October 2009 implementing
Directive 2007/2/EC of the European Parliament and of
the Council as regards the Network Services, 2009.
Available at: <http://eur-lex.europa.eu/legal-content/
EN/TXT/PDF/?uri=CELEX:02009R0976-20101228&
from=EN> [Accessed: 2015-01-16].

[3] European Commission. INSPIRE Directive, 2007.
Available at: <http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=OJ:L:2007:108:0001:0014:EN:PDF>
[Accessed: 2015-01-16].

[4] E. Hietanen and L. Lehto. OS Implementation of
INSPIRE Hydrography Services in a Multi-Provider
Setting. In INSPIRE Conference, 18-20 June, 2014,
Aalborg, Denmark. Available at: <http://
inspire.ec.europa.eu/events/conferences/inspire_2014/sch
edule/submissions/261.html> [Accessed: 2015-01-16]

[5] L. Lehto, E. Hietanen and P. Latvala. Using
Geosynchronization for Incremental Update of INSPIRE
Service Databases. In The Sixth International Conference
on Advanced Geographic Information Systems,
Applications and Services, GEOProcessing 2015, Feb 22
– 27, 2015, Lisbon, Portugal. (Unpublished).

[6] M. Nottingham and R. Sayre, editors. The Atom
Syndication Format. The Internet Society, 2005.
Available at: <http://tools.ietf.org/html/rfc4287>
[Accessed: 2015-01-16].

AGILE 2015 – Lisbon, June 9-12, 2015

[7] P. A. Vretanos, editor. OpenGIS Web Feature Service
2.0 Interface Standard. Open Geospatial Consortium,
2011. Available at: <http://portal.opengeospatial.org/
files/?artifact_id=39967> [Accessed: 2015-01-16]

[8] P. A. Vretanos, editor. OWS 7 Engineering Report –
Geosynchronization Service. Open Geospatial
Consortium, 2011. Available at: <http://
portal.opengeospatial.org/files/?artifact_id=39476>
[Accessed: 2015-01-16].

