
1 Introduction 

By investigating the home detection of cyclists tracking their 

workouts, this paper will serve as a basis for future work ex-

ploring the characteristics and utilisation potential of mobile 

sports tracking application data. Previous results have indicat-

ed a relationship between cycling volumes derived from 

sports tracking data and in situ counts (Griffin & Jiao, 2014; 

Oksanen et al., 2015); however, considering its fitness for 

purpose especially in the planning context, further understand-

ing is needed regarding the representativeness of such crowd-

sourced movement data. Additionally, as the availability of in 

situ counts of cyclists, not to mention other activity modes, 

such as walking or running, is mainly limited to largest cities, 

using demographic data instead would make an interesting 

opportunity, for example, to calibrate volumes derived from 

tracking data. Therefore, our future aim is to study whether 

the demographic representativeness could be determined by 

comparing home locations extracted from sports tracking data 

to population data provided by the statistical office, once both 

datasets are represented at the same spatial aggregation level.  

Considering home detection, mobile sports tracking data, 

which represents actively recorded workouts, differs from 

passively collected vehicle GPS traces. From many perspec-

tives, sports tracking data has more similarities with episodic 

social media data representing more or less random snapshots 

of individuals’ spatiotemporal behaviour. In this paper, we 

focus on understanding the challenges of inferring cyclists’ 

home locations based on their spatiotemporal tracking behav-

iour. We employ an interactive tool to identify features specif-

ic to the data at hand by assessing the results of two different 

home detection methods in the spatial and temporal contexts. 

We also briefly discuss the implications that geovisual repre-

sentation might have to personal privacy. 

The rest of the paper is structured as follows. Section 2 

summarizes previous work on home detection and geovisual 

analytics. In Section 3, we introduce the mobile sports track-

ing data, as well as describe two alternative home detection 

methods applied for the data, and the analysis tool. In Section 

4, we draw together the main insights that could be made 

regarding the challenges posed by home detection. Finally, we 

conclude the paper with conclusions and future prospects. 

 

2 Related work 

2.1 Home detection 

Uncovering the place of residence can be a prerequisite for 

studying human mobility patterns, such as commuting (Kung 

et al., 2014), understanding social dynamics (Phithakkitnu-

koon et al., 2012), analysing VGI contribution patterns (Ziel-

stra et al., 2014), or using targeted advertising (Li et al., 

2012), to mention but a few. Another important motive for 

automated home detection has been the assessment of privacy 

threats posed by publically available datasets (Krumm, 2007). 

The proliferation of user-generated data has increased the 

popularity of home location inference among scholars as the 

massive repositories of geo-data have opened novel possibili-

ties to investigate human activities and lifestyles. The granu-
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larity, i.e. the resolution at which the home location can be 

predicted, varies, however, substantially between methods and 

datasets (Hu et al., 2016).  

Detection of hotspots, i.e. places with maximal number of 

activities, or alternatively maximal number of active days, is a 

common method used for home inference. This approach has 

been applied to several different datasets, such as tweets 

(Hawelka et al., 2014), check-ins in Foursquare (Pontes, 

2012), bank card transactions (Bojic et al., 2015), and mobile 

phone data (Cho et al., 2011). Temporal information is often 

considered by limiting the inspection to hours when people 

are typically at home, e.g. between midnight and 7 am (Hu et 

al., 2016). With passively collected continuous GPS data, the 

last destination of the day, which was defined to be the one 

closest to 3 a.m., provided best results (Krumm, 2007). In 

another early work on the topic, Liao et al. (2006) showed 

how homes could be detected from a similar dataset by super-

vised learning. Often the methods, be they rule-based or su-

pervised, can be complemented by content analysis, which 

can improve results with textual artefacts, such as tweets 

(Cheng et al., 2010, Mahmud et al. 2012), and photographs 

(Zheng et al., 2015), as well as the analysis of social ties 

(Backstrom et al., 2010).  

 

2.2 Geovisual analytics 

By combining the processing power of information technolo-

gy and the efficient human reasoning through visual interac-

tion, (geo)visual analytics has become an attractive means to 

make sense of complex spatiotemporal patterns. Not surpris-

ingly, it plays today an important part in extracting knowledge 

from massive but semantically poor movement datasets. As 

Andrienko et al. (2007) emphasize, making semantic links is 

comparatively easy for humans. Due to the highly complex 

nature of movement, the analysis tool should help the analyst 

to reduce the volume of data by aggregation and selection, as 

well as look the data from different perspectives while ensur-

ing the privacy of individual movers (Andrienko et al., 2013). 

It seems that the call by Andrienko & Andrienko (2012) to 

pay more attention to privacy implications of visual analytics, 

especially “issues arising from the involvement of human 

analyst empowered with interactive visual tools” has perhaps 

not been properly answered so far. 

 There is a multitude of examples using visual analytics sys-

tems to analyse movement patterns representing users of so-

cial media (Chen et al. 2016), taxis (Ferreira et al. 2013), and 

bike sharing systems (Beecham et al. 2014) or group cycling 

journeys (Beecham & Wood, 2014), for instance. However, in 

studies focusing on home detection, visual analytics has re-

ceived limited attention. The work by Andrienko & Andrien-

ko (2012) demonstrates the power of combining spatial and 

temporal contexts in home identification, but is based on con-

tinuous GPS tracking data. Addressing the problem of diverse 

commuting patterns and consequent inadequacy of rule-based 

methods, Yu et al. (2015) implemented a visual analytics sys-

tem for reliable validation of home and work locations based 

on smart card data. The purpose of the system applying space-

time cubes was to allow experts to create ground truth data 

needed for a learning model. The work by Liccardi et al. 

(2016) using Twitter data is also worth mentioning. Based on 

a user test, the authors evaluated how different types of visual 

and textual representations of the data benefit the inference of 

functional locations of home, work, leisure and transport. The 

results emphasized the superiority of geovisual representa-

tions over textual ones.   
 

3 Materials and methods 

3.1 GPS tracking data 

After removing tracks that had no timestamp or had lasted less 

than two minutes, the dataset covering the Helsinki Metropoli-

tan Area included 50,758 workouts recorded by 3,732 users of 

Sports Tracker mobile application (http://www.sports-

tracker.com). The data covered the period from April 2010 to 

November 2012, and was pseudonymised by Sports Tracking 

Technologies Ltd. (currently Amer Sports Digital Services 

Ltd.) before its delivery; in other words, all explicit identifiers 

were excluded but the possibility to distinguish tracks record-

ed by the same user was preserved. All tracks included in the 

study had been tagged ‘public’ by the application users.  

We argue that there are three things that one should espe-

cially pay attention to when detecting home locations based 

on mobile sports tracking data: time, track type, and number 

of recorded tracks by an individual. First, each track com-

prised of GPS points (x, y) recorded at a one second interval. 

In this study, route information was insignificant and only the 

two end points associated with their timestamps were used. 

Second, two different types of tracks could be identified from 

the data by their geometric shape: circular ‘loop tracks’, 

which start and end at the same place, and so called ‘A-to-B 

tracks’, where the origin and destination points do not co-

occur spatially. While loop tracks presumably represent recre-

ational and sports cycling, A-to-B tracks are mainly utilitarian 

cycling, especially commuting (Bergman & Oksanen, 2016a). 

Third, the tracks are not evenly distributed between the users 

(Oksanen et al., 2015; Bergman & Oksanen, 2016b). While a 

small share of users have recorded hundreds of tracks, about 

60% of users have recorded at most five tracks. Each track 

was represented by seven attributes: trackID, userID, time of 

departure, time of arrival, origin point, destination point, and 

character, which was ‘loop’ if the ratio of the track’s total 

length to the straight line distance between the start and end 

points exceeded four, and otherwise ‘A-to-B’ (see Bergman & 

Oksanen, 2016a).  

 

3.2 Home detection methods 

The workflow used for home detection included three steps. 

First, all origin and destination points of a user were clustered 

based on their location using density-based clustering (see 

Bergman & Oksanen, 2016a). The minimal number of points 

in a cluster was defined as one and the distance parameter 

required by the DBSCAN algorithm was 500 meters. Second, 

the detected clusters were filtered using two rule-based meth-

ods for home inference. The first method (M1) preserved all 

origin and destination points of A-to-B tracks, but regarding 

loop tracks only the origin points. With the second method 

(M2) we aimed to increase the reliability of capturing the 

home-end of an A-to-B track by introducing different tem-

poral thresholds regarding origin and destination points. Thus, 

we included all origin points of A-to-B tracks starting in the 

‘morning’ (3 am–1 pm) and destination points of A-to-B 

tracks ending in the ‘evening’ (1 pm–5 am) in addition to the 
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origin points of loop tracks. Finally, the cluster with most 

tracks (i.e. points) was selected as the most probable home 

cluster. The location of home was approximated as the cen-

troid of the cluster. 

 

3.3 Interactive tool for geovisual reasoning 

The aim of the tool for visually supported analysis was to 

provide a clear uncluttered view on the home candidates re-

sulting from the workflow described in the previous section. 

The identified clusters (‘potential home locations’) were clas-

sified so that the largest and second-largest clusters (rendered 

with red and yellow respectively) of each user could be differ-

entiated from other clusters (rendered with blue). While col-

our depicted the order of the clusters, the size of a circle rep-

resented the number of points in a cluster. This helps the ana-

lyst to get an immediate view of the situation in the geograph-

ical context even without a need to search the statistical plots. 

Information on the spatial context was provided by Open-

StreetMap base map, which, based on visual inspection, is of 

high quality in the urban study area.  

Apart from zooming, the analyst can filter the data by user 

either by inserting the wanted userID into a text box or by 

selecting a cluster from the map. As a result the map will 

show all clusters of the user. The map view is accompanied by 

bar plots, which provide information about (1) the sizes of the 

clusters; regarding A-to-B tracks the median time of (2) de-

parture and (3) arrival; and (4) the share of loop tracks in each 

cluster. Notice that the bar plots will appear only when an 

individual user is selected and are not therefore shown in Fig-

ures 1 and 2. To protect personal privacy, clusters of individu-

al users cannot be presented (see conclusions for a suggestion 

how the situation could be advanced). In addition to user-wise 

statistics, the analyst can view cluster-wise statistics separate-

ly in numerical format simply by hovering the mouse over a 

cluster. The presented information includes: userID; number 

of points; loop rate; and the median and standard deviation of 

the departure and arrival times of A-to-B tracks (Figure 1). 

The data is retrieved from PostgreSQL/PostGIS database us-

ing asynchronous PHP queries and mapped on Leaflet. 

To get a proper insight into the challenges of different 

methods, we randomly selected 100 users and inspected the 

clusters of each of them with the following question in mind: 

Is the most probable home location cluster valid and why? In 

addition, certain places, such as the airport and other business 

areas, as well as large green areas were explored with focus 

on homes potentially identified within these non-residential 

areas.  

 

4 Results 

The 100 randomly selected users were classified based on 

how reliable the results were: with M2, the detected home 

location was classified as ‘correct’ for 83 users, while 6 users 

were classified ‘uncertain’, and with 11 users the home loca-

tion was ‘wrong’. Results of M1 were very similar to those of 

M2; however, in several cases the largest cluster and the sec-

ond-largest cluster which likely represented the user’s work-

place were almost of equal size, and in two cases, the work-

place cluster was actually the largest due to the absence of 

time thresholds, thus leading to a wrong result. In one case, 

where it was practically impossible even for the human ana-

lyst to determine which cluster represented home, the result 

was different, but remained uncertain. Also in the place-based 

investigation, M2 performed better than M1 at the airport 

(Figure 2) and in non-residential business parks. Yet, both 

methods worked well in large shopping malls and green areas, 

where almost no home clusters were detected.  

Figure 1: Mass events could be visually detected by clusters that formed distinctive patterns, which result 

from the routine of starting tracking already before the start line. Red and yellow circles represent users’ 

most likely and second most likely home candidates respectively. Other clusters are denoted as blue circles 

(© OpenStreetMap contributors). 
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A-to-B tracks in the evening and on weekend proved out to 

be challenging as they could represent trips to hobbies; sports 

centres and parks were typical destinations that could be clear-

ly identified. This was problematic specifically with users 

who had recorded only one or a few tracks. It was clear that 

A-to-B tracks that would originate in the morning were gener-

ally more reliable than tracks arriving in the evening. In four 

cases the false home detection could be corrected by giving 

more weight on morning tracks. Also loop tracks were con-

sidered more reliable than A-to-B tracks in the evening. Three 

homes were detected falsely based on a single loop, which 

originated outside the residential areas. Few uncertain cases 

represented loops that seemed to originate rather from work-

place than home or other place outside residential areas with-

out a clear meeting point. Common to all cases where the 

methods gave wrong results, was the small number of record-

ed tracks. However, majority of the cases where only few 

tracks were involved could be classified as ‘certain’ (Figure 

3).  

Nonstandard working hours are a recognized problem with 

rule-based approached using temporal thresholds, as the home 

clusters located at the airport indicate (Figure 2). Luckily such 

workplaces are often located outside residential areas and 

could possibly be handled with suitable land use data. Mass 

events could be clearly detected by their small clusters, many 

of which included only one origin point (Figure 1).  

 

5 Discussion and conclusions 

With a simple tool enabling visually supported analysis of 

heterogeneous sports tracking data, we were able to acquire 

knowledge that would otherwise be difficult to get. Although 

analytic reasoning – a defining concept of (geo)visual analyt-

ics (Andrienko et al., 2011) – had a strong interpretative and 

computational nature, reasoning by human analyst allowed to 

capture the rich spatiotemporal context, critical for under-

standing the challenges of home detection. Furthermore, even 

though the spatial context was significant, only through its 

combination with temporal data it was possible to derive reli-

able insights.    

We detected multiple issues, most of which could likely be 

corrected in the future by refining the rules and including data 

of land use or residential areas. More weight could be given to 

loop tracks originating from residential areas and A-to-B 

tracks in the early morning. The results emphasise the im-

portance of understanding what the data at hand represents, 

and as Bojic et al. (2015) have previously highlighted, adjust-

ing the used methods accordingly. Further investigation is 

also required to understand the optimal granularity of home 

location inference using sports tracking data.  

Considering privacy threats the results are in agreement 

with those by Liccardi et al. (2016): uncovering frequent and 

sensitive locations, here home location, can often be achieved 

with even a small sample of data points. The method without 

time thresholds (M1) typically uncovered not only the poten-

tial home location but also workplace, and is therefore more 

harmful in terms of ensuring personal privacy (Golle & Par-

tridge, 2009) than the method with time thresholds (M2). Irre-

spective of the used home detection method, the privacy of the 

users could be enhanced by geographical masking, which 

would mean adding random noise to the locations of identified 

home candidates. With information of residential areas and 

population or building density the masked location could be 

Figure 2: Home candidates detected (a) without using time thresholds (M1), and (b) with time 

thresholds (M2) at the airport where working times often differ form the standard office hours. In-

clusion of time thresholds improved the results substantially by turning the home clusters rendered 

with red into ‘secondary’ clusters (rendered with yellow and blue) or completely removing them  

(© OpenStreetMap contributors).  

 

Figure 3: Results of the home detection with 

the method M2 regarding the 100 random us-

ers classified by their number of tracks.  
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selected from an area with similar characteristics, meaning 

that the spatial context of each cluster would be preserved 

(Zhang et al. 2015).  
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